MMSL 2023, 92(2):112-121 | DOI: 10.31482/mmsl.2022.030

A DECLINE IN VITAMIN K AND SOD LEVELS AND THE CHANGE IN PARP1 AND SIRT1 EXPRESSION MIGHT BE ASSOCIATED WITH PROGRESSION OF BREAST CANCEROriginal article

Zainab T. Abd-alzahraa ORCID..., Zainab N. Al-Abady ORCID...*
Department of Chemistry, Faculty of Sciences, University of Al-Qadisiyah, Al Diwaniyah, Iraq

Cancer cells have a special energy metabolism that enables them to multiply quickly. Under normal oxygen conditions, the Warburg effect is a distinguishing aspect of cancer metabolism in which anaerobic glycolysis is favored. Enhanced glycolysis also helps to produce nucleotides, amino acids, lipids, and folic acid, all of which are necessary for cancer cell division. In a variety of metabolic processes, including glycolysis, the co-enzyme nicotinamide adenine dinucleotide (NAD) mediates redox reactions. NAD levels that are higher promote glycolysis and supply energy to cancer cells. NAD metabolism, like energy metabolism, is linked in cancer genesis and could be a potential therapeutic target for cancer treatment. In this research, NAD-consuming enzymes, poly(ADP-ribose) polymerase (PARP) and SIRT1, have been investigated in breast cancer patients, in addition to detect the levels of serum malondialdehyde (MDA), superoxide dismutase (SOD) and vitamin K levels. Sixty participants were enrolled in this study, 30 women with breast cancer and 30 controls. Serum were analysed for determination of the levels of PARP1, SIRT1, MDA, SOD, and vitamin K. The results showed a drop in the expression levels of PARP and that was concomitant with the elevation in the expression levels of SIRT1 and MDA, in addition to the drop in SOD and vitamin K levels. These findings suggest that SIRT1 might be the most NAD-consuming enzyme in cancerous cells rather than PARP (the DNA repair enzyme), and this increase in MDA with the drop in  SOD and vitamin K might be associated with the increase in cell proliferation and a decrease in apoptotic cell death. Finally, this study could be used as a treatment option for patients with breast cancer. could be used as a treatment option for patients with breast cancer.

Keywords: NAD; PARP1; SIRT1; Vitamin K; Breast Cancer Patients

Received: May 22, 2022; Revised: July 14, 2022; Accepted: July 14, 2022; Prepublished online: December 1, 2022; Published: June 2, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Abd-alzahraa, Z.T., & Al-Abady, Z.N. (2023). A DECLINE IN VITAMIN K AND SOD LEVELS AND THE CHANGE IN PARP1 AND SIRT1 EXPRESSION MIGHT BE ASSOCIATED WITH PROGRESSION OF BREAST CANCER. MMSL92(2), 112-121. doi: 10.31482/mmsl.2022.030
Download citation

References

  1. Yaku K, Okabe K, Nakagawa T. NAD metabolism: Implications in aging and longevity. Ageing research reviews. 2018;47:1-7. https://doi.org/10.1016/j.arr.2018.05.006. Go to original source... Go to PubMed...
  2. Houtkooper RH, Cantó C, Wanders RJ, et al. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocrine reviews. 2010;31(2):194-223. https://doi.org/10.1210/ er.2009-0026. Go to original source... Go to PubMed...
  3. Yamamoto M, Inohara H, Nakagawa T. Targeting metabolic pathways for head and neck cancers therapeutics. Cancer and Metastasis Reviews. 2017;36(3):503-514. https://doi.org/10.1007/s10555-017-9691-z. Go to original source... Go to PubMed...
  4. Tan B, Young DA, Lu ZH, et al. Pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), an enzyme essential for NAD+ biosynthesis, in human cancer cells: metabolic basis and potential clinical implications. Journal of Biological Chemistry. 2013;288(5):3500-3511. https://doi.org/10.1074/jbc.M112.394510. Go to original source... Go to PubMed...
  5. Kalhan SC, Hanson RW. Resurgence of serine: an often neglected but indispensable amino Acid. Journal of Biological Chemistry. 2012;287(24):19786-19791. https://doi.org/10.1074/jbc.R112.357194. Go to original source... Go to PubMed...
  6. Murphy JP, Giacomantonio MA, Paulo JA, et al. The NAD+ salvage pathway supports PHGDH-driven serine biosynthesis. Cell reports. 2018;24(9):2381-2391. https://doi.org/10.1016/j.celrep.2018.07.086. Go to original source... Go to PubMed...
  7. Gossmann TI, Ziegler M, Puntervoll P, et al. NAD+ biosynthesis and salvage-a phylogenetic perspective. The FEBS Journal. 2012;279(18):3355-3363. https://doi.org/10.1111/j.1742-4658.2012.0 8559.x. Go to original source... Go to PubMed...
  8. Sharif T, Martell E, Dai C, et al. Regulation of cancer and cancer-related genes via NAD+. Antioxidants & Redox Signaling. 2019;30(6):906-923. https://doi.org/10.1089/ars.2017.7478. Go to original source... Go to PubMed...
  9. Fang EF, Lautrup S, Hou Y, et al. NAD+ in aging: molecular mechanisms and translational implications. Trends in molecular medicine. 2017;23(10):899-916. https://doi.org/10.1016/j.molmed.2017.08.001. Go to original source... Go to PubMed...
  10. Cantó C, Menzies KJ, Auwerx J. NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell metabolism. 2015;22(1):31-53. https://doi.org/ 10.1016/j.cmet.2015.05.023. Go to original source... Go to PubMed...
  11. Chiarugi A, Dölle C, Felici R, et al. The NAD metabolome-a key determinant of cancer cell biology. Nature Reviews Cancer. 2012;12(11):741-752. https://doi.org/10.1038/nrc3340. Go to original source... Go to PubMed...
  12. Haag F, Adriouch S, Braß A, et al. Extracellular NAD and ATP: Partners in immune cell modulation. Purinergic signalling. 2007;3(1):71-81. https://doi.org/10.1007/s11302-006-9038-7. Go to original source... Go to PubMed...
  13. Verdin E. NAD+ in aging, metabolism, and neurodegeneration. Science. 2015;350(6265):1208-1213. https://doi.org/10.1126/science.aac4854. Go to original source... Go to PubMed...
  14. Nikiforov A, Kulikova V, Ziegler M. The human NAD metabolome: Functions, metabolism and compartmentalization. Critical reviews in biochemistry and molecular biology. 2015;50(4):284-297. https://doi.org/10.3109/10409238.2015.1028612. Go to original source... Go to PubMed...
  15. Ruggieri S, Orsomando G, Sorci L, et al. Regulation of NAD biosynthetic enzymes modulates NAD-sensing processes to shape mammalian cell physiology under varying biological cues. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 2015;1854(9):1138-1149. https://doi.org/10.1016/j.bbapap.2015.02.021. Go to original source... Go to PubMed...
  16. Okabe K, Yaku K, Tobe K, et al. Implications of altered NAD metabolism in metabolic disorders. Journal of biomedical science. 2019;26(1):1-3. https://doi.org/10.1186/s12929-019-0527-8. Go to original source... Go to PubMed...
  17. Strømland Ø, Niere M, Nikiforov AA, et al. Keeping the balance in NAD metabolism. Biochemical Society Transactions. 2019;47(1):119-130. https://doi.org/10.1042/BST20180417. Go to original source... Go to PubMed...
  18. Demarest TG, Babbar M, Okur MN, et al. NAD+ metabolism in aging and cancer. Annual Review of Cancer Biology. 2019;3:105-130. https://doi.org/10.1146/annurev-cancerbio-030518-055905. Go to original source...
  19. Pehar M, Harlan BA, Killoy KM, et al. Nicotinamide adenine dinucleotide metabolism and neurodegeneration. Antioxidants & redox signaling. 2018;28(18):1652-1668. https://doi.org/10.1089/ars.2017.7145. Go to original source... Go to PubMed...
  20. Kim MY, Zhang T, Kraus WL. Poly (ADP-ribosyl) ation by PARP-1:PAR-laying'NAD+ into a nuclear signal. Genes & development. 2005;19(17):1951-1967. https://doi.org/10.1101/gad.1331805. Go to original source... Go to PubMed...
  21. Bajrami I, Kigozi A, Van Weverwijk A, et al. Synthetic lethality of PARP and NAMPT inhibition in triple-negative breast cancer cells. EMBO molecular medicine. 2012;4(10):1087-1096. https://doi.org/10.1002/emmm.201201250. Go to original source... Go to PubMed...
  22. Okabe K, Yaku K, Tobe K, et al. Implications of altered NAD metabolism in metabolic disorders. Journal of biomedical science. 2019;26(1):1-3. https://doi.org/10.1186/s12929-019-0527-8. Go to original source... Go to PubMed...
  23. Konen JM, Fradette JJ, Gibbons DL. The good, the bad and the unknown of CD38 in the metabolic microenvironment and immune cell functionality of solid tumors. Cells. 2019;9(1):52. https://doi.org/10.3390/cells9010052. Go to original source... Go to PubMed...
  24. Lu X, Kong L, Ma P, et al. Vitamin K2 inhibits hepatocellular carcinoma cell proliferation by biding to 17β-Hydroxysteroid dehydrogenase 4. Frontiers in Oncology. 2021:4627. https://doi.org/10.3389/fonc.2021.757603. Go to original source... Go to PubMed...
  25. Refolo MG, D'Alessandro R, Lippolis C, et al. IGF-1R tyrosine kinase inhibitors and Vitamin K1 enhance the antitumor effects of Regorafenib in HCC cell lines. Oncotarget. 2017;8(61):103465. https://doi.org/10.18632/oncotarget.21403. Go to original source... Go to PubMed...
  26. Nimptsch K, Rohrmann S, Kaaks R, et.al . Dietary vitamin K intake in relation to cancer incidence and mortality: results from the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Heidelberg). The American journal of clinical nutrition. 2010;91(5):1348-1358. https://doi.org/10.3945/ajcn.2009.28691. Go to original source... Go to PubMed...
  27. Shearer MJ (1995) Vitamin K. Lancet 345(8944):229-234. Go to original source... Go to PubMed...
  28. Shurrab M, Quinn KL, Kitchlu A, et al. Long-term vitamin K antagonists and cancer risk: a systematic review and meta-analysis. American journal of clinical oncology 2019;42:717e24. https://doi.org/10.1097/ coc00571. Go to original source... Go to PubMed...
  29. Beaudin S, Kokabee L, Welsh J. Divergent effects of vitamins K1 and K2 on triple negative breast cancer cells. Oncotarget 2019; 10:2292e305. https://doi.org/10.18632/oncotarget.26765. Go to original source... Go to PubMed...
  30. Xiao W, Wang RS, Handy DE, et al. NAD(H) and NADP(H) redox couples and cellular energy metabolism. Antioxid Redox Signal 2018; 28:251-272. https://doi.org/10.1089/ars.2017.7216 Go to original source... Go to PubMed...
  31. Agledal L, Niere M, Ziegler M. The phosphate makes a difference: cellular functions of NADP. Redox Rep 2010;15:2-10.https://doi.org/10.1179/174329210X12650506623122 Go to original source... Go to PubMed...
  32. Love NR, Pollak N, Dollea C, et al. NAD kinase controls animal NADP biosynthesis and is modulated via evolutionarily divergent calmodulin-dependent mechanisms. Proc Natl Acad Sci U S A 2015;1(12):1386-1391. https://doi.org/10.1073/pnas.14172901 Go to original source... Go to PubMed...
  33. Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. The Journal of Immunology. 1995;155(3):1151-1164. Go to original source... Go to PubMed...
  34. Conze D, Brenner C, Kruger CL. Safety and metabolism of long-term administration of NIAGEN (nicotinamide riboside chloride) in a randomized, double-blind, placebo-controlled clinical trial of healthy overweight adults. Scientific reports. 2019;9(1):1-3. https://doi.org/10.1038/s41598-019-46120-z. Go to original source... Go to PubMed...
  35. Guerreiro S, Privat AL, Bressac L, et al. CD38 in Neurodegeneration and Neuroinflammation. cells. 2020;9(2):471. https://doi.org/10.3390/cells9020471. Go to original source... Go to PubMed...
  36. Hao C, Zhu PX, Yang X, et al. Overexpression of SIRT1 promotes metastasis through epithelial-mesenchymal transition in hepatocellular carcinoma. BMC cancer. 2014;14(1):978. https://doi.org/10.1186/1471-2407-14-978. Go to original source... Go to PubMed...
  37. Alves-Fernandes DK, Jasiulionis MG. The role of SIRT1 on DNA damage response and epigenetic alterations in cancer. International journal of molecular sciences. 2019;20(13):3153. https://doi.org/10.3390/ijms20133153. Go to original source... Go to PubMed...
  38. Poljsak B. NAD+ in cancer prevention and treatment: pros and cons. J. Clin. Exp. Oncol. 2016;4:2. https://doi.org/10.4172/2324-9110.1000165. Go to original source...
  39. Chiarugi A, Dölle C, Felici R, et al. The NAD metabolome-a key determinant of cancer cell biology. Nature Reviews Cancer. 2012 Nov;12(11):741-52. https://doi.org/10.1038/nrc3340. Go to original source... Go to PubMed...
  40. Kennedy BE, Sharif T, Martell E, et al. NAD+ salvage pathway in cancer metabolism and therapy. Pharmacological research. 2016;114:274-283. https://doi.org/10.1016/j.phrs.2016.10.027. Go to original source... Go to PubMed...
  41. Zhao Y, Ling F, Griffin TM, et al. Up-regulation of the Sirtuin 1 (Sirt1) and Peroxisome Proliferator-activated Receptor γ Coactivator-1α (PGC-1α) Genes in White Adipose Tissue of Id1 Protein-deficient Mice. Journal of Biological Chemistry. 2014;289(42):29112-29122. https://doi.org/10.1074/jbc.M114.571679. Go to original source... Go to PubMed...
  42. Braidy N, Berg J, Clement J, et al. Role of nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: rationale, biochemistry, pharmacokinetics, and outcomes. Antioxidants & Redox Signaling. 2019;30(2):251-294. https://doi.org/10.1089/ars.2017.7269. Go to original source... Go to PubMed...
  43. Cantó C, Menzies KJ, Auwerx J. NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell metabolism. 2015;22(1):31-53. https://doi.org/10.1016/j.cmet.2015.05.023. Go to original source... Go to PubMed...
  44. Domagala P, Huzarski T, Lubinski J, et al. PARP-1 expression in breast cancer including BRCA1-associated, triple negative and basal-like tumors: possible implications for PARP-1 inhibitor therapy. Breast Cancer Res Treat. 2011;127(3):861-869. https://doi.org/10.1007/s10549-011-1441-2. Go to original source... Go to PubMed...
  45. Gupta RK, Patel AK, Kumari R, et al. Interactions between oxidative stress, lipid profile and antioxidants in breast cancer: a case control study. Asian Pacific Journal of Cancer Prevention. 2012;13(12):6295-6298. http://dx.doi.org/10.7314/APJCP.2012.13.12.6295 Go to original source... Go to PubMed...
  46. Khanzode SS, Muddeshwar MG, Khanzode SD, et al. Antioxidant enzymes and lipid peroxidation in different stages of breast cancer. Free Radic Res. 2004;38(1):81-85. https://doi.org/10.1080/01411590310001637066. Go to original source... Go to PubMed...
  47. Juanola-Falgarona M, Salas-Salvado J, Martinez-Gonzalez MA, et al. Dietary intake of vitamin K is inversely associated with mortality risk. J Nutr 2014;144:743-750. https://doi.org/10.3945/jn.113.187740 Go to original source... Go to PubMed...
  48. Sasaki R, Suzuki Y, Yonezawa Y, et al. DNA polymerase γ inhibition by vitamin K3 induces mitochondria-mediated cytotoxicity in human cancer cells. Cancer science. 2008;99(5):1040-1048. https://doi.org/10.1111/j.1349-7006.2008.00771.x. Go to original source... Go to PubMed...
  49. Merkhan MM, Abdullah KS. The role of vitamin C and E in improving hearing loss in patients with type 2 diabetes. Annals of the College of Medicine, Mosul. 20209;41(2):184-189. https://doi.org/10.33899/mmed.2020.164162 Go to original source...
  50. Sulaiman EA, Dhia S, Merkhan MM. Overview of vitamin d role in polycystic ovarian syndrome. MMSL. 2022;91(1):37-43. https://doi.org/10.31482/mmsl.2021.027 Go to original source...
  51. Younis HY, Imad A. Effect of zinc as an add on to metformin therapy on serum lipid profile and uric acid in type 2 diabetes mellitus patients. Curr topics in Pharmacology. 2021;25.
  52. Younis HY, Thanoon IA, Fadhil NN, et al. Effect of Zinc as an Add-On to Metformin Therapy on Glycemic control, Serum Insulin, and C-peptide Levels and Insulin Resistance in Type 2 Diabetes Mellitus Patient. Research Journal of Pharmacy and Technology. 2022;15(3):1184-1188. https://doi.org/10.52711/0974-360X.2022.00198. Go to original source...
  53. Althanoon ZA, Merkhan MM. Effects of zinc supplementation on metabolic status in patients with metabolic syndrome. Acta Poloniae Pharmaceutica. 2021;78(4):521-526. https://doi.org/10.32383/appdr/141348. Go to original source...
  54. Merkhan M, Mohammad J, Fathi Z, et al. Silent hyperlipidaemia modulated vascular endothelial markers. Pharmacia. 2021;68(2):479-484. https://doi.org/10.3897/pharmacia.68.e67959. Go to original source...