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Summary
This review describes a drug target for cancer therapy, family of phosphatidylinositol-3 kinase related

kinases (PIKKs), and it gives a comprehensive review of recent information. Besides general information
about phosphatidylinositol-3 kinase superfamily, it characterizes a DNA-damage response pathway since it
is monitored by PIKKs. 

Key words: PIKKs; ATM; ATR; DNA-PK; Ionising radiation; DNA-repair

ABBREVIATIONS

DSB - double stand breaks,
IR - ionising radiation,
p53 - TP53 tumour suppressors,
PI - phosphatidylinositol.

INTRODUCTION

An efficient cancer treatment means to restore
controlled tissue growth via interfering with cell sig-
nalling pathways regulating cell-cycle and apoptosis.
Among many treatment strategies, targeted cancer

therapy and radiation play a pivotal role. Since cancer
is one of the leading causes of death worldwide, it is
reasonable to invest time and resources in the enligh-
tening of mechanisms, which underlie radio-resis-
tance.

The aim of this review is to describe the family
of phosphatidyinositol 3-kinases (PI3K) and its func-
tional subgroup - phosphatidylinositol-3-kinase rela-
ted kinases (PIKKs) and their relation to repairing of
radiation-induced DNA damage. Besides PI3K clas-
sification, we give a detailed description of the me-
chanisms of activation as well as their downstream
substrates. Taken together, this paper concerns DNA
damage repair induced by gamma-radiation and fo-
cuses on the role of PIKKs.

Phosphatidylnositol 3-kinase family

Protein kinases are generally believed to be
an effective drug target. Many studies and clinical
trials have been focused on inhibition of Epidermal
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Growth Factor Receptor family (EGFR), Breakpo-
int cluster region - Abelson murine leukemia viral
oncogene homolog 1 fusion protein (Bcr-Abl) or
Platelet-Derived Growth Factor Receptors
(PDFGR) kinases but recently PI3K have come
under the spotlight [1][2][3].

PI3K were originally described by the group of
Lewis Cantley. They were the first ones who ob-
served a close correlation between phosphoinosi-
tide (PI) kinase activity and transforming ability
of viral oncoproteins [4]. They also reported uni-
que substrate specifity towards PI and that PI3K
phosphorylates phosphatidyinositol bisphosphate
(PIP2) on the position 3 of the inositol ring, thus
producing phosphatidylinositol (3,4,5)-trispho-
sphate (PIP3) [5].

PI3K classification

PI3K superfamily is used to be generally clas-
sified into three classes: I, II, and III. The classifi-
cation is based on primary structure; catalytic and
adaptor/regulatory subunits associate into the he-
terodimers, thereby affecting PI3K response to a
wide variety of stimuli. Another criterion is sub-
strate specifity since each PI3K class produces
characteristic lipid second messengers. In this
paper, we describe in detail an additional group of
more distantly related and structurally heterogene-
ous enzymes functioning as protein serine/thre-
onine kinases, which are involved in monitoring
of genomic integrity and control signalling in
order to regulate cell growth. These kinases will
be referred to as class IV (see Table 1.).
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Table 1. Overview of members of phosphatidylnositol 3-kinase family, their substrates and functions.

Class Catalytic / Regulatory subunit Substrate Function Reference

IA p110α, p110β,
p110δ

p85α, p55α, p50α,
p85β, p55γ phosphoinositide(4,5) bisphosphate

(PIP2)

cell growth, proliferation, survival,
glucose homeostasis, metabolism

[7]
[81]

IB p110γ p101, p84 immune and inflammatory processes

II C2α, C2β,  C2γ --- phosphatidylinositol (PI) and PI(4)P,
PI(4,5)P2 membrane trafficking

III Vps34 p150 PI autophagy

IV ATM e.g. ATM, H2A.X, p53, chk-2, mdm2,
BRCA1, Nbs1, Mre11, Phas-I, etc.

DNA repair, cell cycle progression,
apoptosis

[12]
[33]
[82]

P
I
K
K
s

ATR p53, Mre11, chk-1, BRCA2, DNA pol-
δ, RPA,  Phas-I replication block, ssDNA repair [82]

DNA-PK
DNA-PK, XRCC4, Ku70/80, XLF,
Artemis, DNA lig IV, H2A.X, p53,

Rad17, BRCA1, 123F-2
non-homologous end joining [42]

[82]

mTOR p70s6k, 4E-BP1, Akt/PKB cell growth, metabolism and survival,
protein synthesis, and transcription [64]

SMG-1 p53 nonsense-mediated mRNA decay [78]

TRRAP no kinase activity embryonic development, cell cycle
progression and mitotic control [77]

PI3K Class I

This is the most studied subgroup due to its
significance in human cancer. Class I PI3Ks are
further divided into IA and IB subset based on

sequence similarity. IA subset consists of
heterodimers comprising a catalytic (p110) and
regulatory subunit (p85). Three PIK3R genes give
rise to five p85 isoforms (PIK3R1 for p85α, p55α,
p50α; PIK3R2 for p85β; and PIK3R for p55γ) as
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a consequence of splice variants. PIK3CA, PIK3CB,
and PIK3CD produce isoforms of catalytic subunit
p110α, p110β, and p110δ. Each p85 isoform can
associate with any of p110 isoforms. IB subset
consists of heterodimers between p110γ (similarly to
other p110s) and a distinct regulatory subunit (p101
or p84). Both subunits are encoded by a single gene
[6]. More specifically, p110α and p110β are both
expressed in all cells and they affect cellular
proliferation or insulin signalling, respectively.
On the contrary, p110γ and p110δ are primarily
expressed in leukocytes. Thus, they are involved in
immune and inflammatory processes. Importantly,
p110α is widely mutated or amplified in human
cancer [7].

The preferred substrate of class I, PI3-kinases is
phosphoinositide(4,5)bisphosphate (PIP2). This is
also a substrate for members of the PI-phospholipase
C family and the product of phosphatase and tensin
homolog (PTEN; a tumour suppressor)
dephosphorylation of PI(3,4,5)P3. Phosphorylation
of PIP2 by PI3K generates PI(3,4,5)P3. PI(3,4,5)P3
and its 5’-dephosphorylation product, PI(3,4)P2, are
important second messengers that coordinate and
promote cell survival, growth, protein synthesis,
mitosis, and motility. PI(3,4)P2 is also produced by
Class II PI3K from PI(4)P. PtdIns(3,4,5)P3 produced
by PI3-kinase is also involved in cell motility via
regulation of Rho-GTPases, RhoA, Rac-1, and
Cdc42 ([7]). Cell survival, mitosis, and protein
synthesis are promoted by PI3-kinase-dependent
activation of the PDK/AKT(PKB) pathway. Besides
that Class I PI3Ks are involved in proliferation,
glucose homeostasis, and metabolism [8].

PI3K Class II and III

Class II molecules are, unlike class I and III PI3Ks,
monomers comprising three catalatylic isoforms (C2α,
C2β, and C2γ) without regulatory subunits. C2α and
C2β are expressed in all cells but C2γ is expressed
only in hepatocytes. Class II PI3Ks are involved in
membrane trafficking. Class III kinases are more
similar to Class I, since they are composed of a
regulatory subunit (p150) and a catalytic subunit
(Vps34). They function in regulation of autophagy and
trafficking proteins and vesicles [9].

Class II PI3-Ks preferentially phosphorylate PI
and PI(4)P to form PI(3)P and PI(3,4)P2,
respectively. Class II PI3-Ks also phosphorylate
PI(4,5)P2 in the presence of phosphatidylserine (PS).
Class III PI3-Ks preferentially phosphorylate PI to

form PI(3)P, which has important roles in vesicular
and protein trafficking. In addition, Class III PI3Ks
are involved in targeting lysosomal enzymes
to the endocytic pathway [7].

PI3K Class IV alias PIKKs

Class IV PI3Ks are known as
phosphatidylinositol-3 kinase-related kinases
(PIKKs). This class comprises of ataxia
telangiectasia mutated kinase (ATM), ataxia
telangiectasia and Rad3 related kinase (ATR), DNA-
dependent protein kinase (DNA-PK), and
mammalian target-of-rapamycin (mTOR).
These members of the PI3K superfamily are protein
serine/threonine kinases, which are involved
in processes of tumour diseases development and
function in signalling pathway called DNA-damage
response (DDR). In this paper, we will focus
on the individual members of class IV, since they are
linked to DNA repair. ATM and DNA-PK respond
mainly to double strand breaks (DSB), whereas ATR
is activated by single-stranded DNA and stalled DNA
replication forks. In all cases, activation involves
their recruitment to the sites of damage [10].
In the next sections, we describe the individual
members of class IV and their participation in DDR.
Finally, we mention two other members
of the family: suppressor with a morphological effect
on genitalia family member (SMG-1), and
transactivation/transformation-domain-associated
protein (TRRAP).

Ataxia telangiectasia mutated kinase (ATM)

Activation of ATM is one of the first steps linked
to DNA damage response after the exposure to
ionising radiation [11], [12]. It is triggered by
formation of the most severe forms of DNA lesions -
DSB. Undoubtedly, ATM is indispensable in regards
to DSB reparation, since it is involved in DNA repair
and regulates all three cell-cycle checkpoints and
apoptosis [13]. During ATM activation after
irradiation, the key factor is a rapid intra-molecular
phosphorylation at serine 1981, which induces
dissociation of an inactive dimer and triggers ATM
activity [14]. Also a specific protein complex is
required for its activation consisting of Mre11,
Rad50, and Nbs1 protein (MRN) [15]. It was proved
that ATM is not activated without MRN complex and
that mutation of its components leads to a genetic
disorder as neurological abnormalities, radio-
sensitivity, cell cycle defects, genomic instability, and
cancer predispositions [16]. MRN complex is
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associated with chromatin during DNA replication
and it can recognize DSB and transmit
this information to ATM by attraction of ATM
to the damaged DNA [17].

Importantly, MRN complex is able to bind DNA
without involvement of active ATM suggesting that
MRN complex is the entire sensor of DSB [18].
Anyway, once activated, ATM is the central DSB
signalling transducer. Falck and colleagues ([10])
reported an interesting finding that Nbs1 is dispensable
for ATM activation, but its C-terminal motif is required
for ATM localization in the site of damage. Another
protein of MRN complex, Rad50, functions
as a protective chromosomal factor. It impedes
excessively rapid shortening of telomeres and so-
called end-to-end joining of sister chromatids [19].
The particular proteins of MRN complex regulate each
other. Nbs1 recruits Mre11 into the nucleus while
Mre11 increases Nbs1 stability and Mre11 exhibits
specific endonuclease activity towards DNA with DSB
while Rad50 inhibits this feature [18], [20].

Upon gamma-irradiation, ATM associates with
chromatin and also with histonedeacetylases, thus
facilitating access of homologous recombination
(HR) proteins to the sites of damaged DNA [13].
The very early step in the DNA damage response is
phosphorylation of histone subtype H2A, class
H2A.X. This process can be executed by two
mutually independent protein kinases – DNA-PK and
ATM – and therefore it might be observed even
in ataxia telangiectasia cell lines [21]. H2A.X
phosphorylated on serine 139 (referred as γH2A.X)
can be visualized by a suitable antibody via
immunofluorescence as a discrete spot (focus) and it
has been reported that it is localized in the area up to
2 × 106 basis from the site of DSB [22]. This might
be also exploited in biodosimetry, since the formation
of ionising radiation-induced foci seems to be dose-
dependent [23]. Although γH2A.X is not essential for
non-homologous end-joining (NHEJ) and HR, it
seems to be an important modulator of both [24].
γH2A.X functions as a protein docking site and it is
likely that it is needed for retention of some proteins
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Figure 1. IR induces molecular mechanisms, which can lead either to cell cycle arrest (ATM/ATR) in order to provide cells
enough time to repair DNA damage (DNA-PK) or to programmed cell death or senescence. Signalling via mTOR initiates
translation and regulates autophagy and cell nutrition.
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participating on DNA repair rather than binding them
and is crucial for assembly of reparation complex in
the site of DSB [25]. 

In the last two decades, a large number of ATM
substrates, which are activated by phosphorylation,
were identified, but among these tumour suppressor
protein p53 (TP53) is outstanding, because a wide
range of studies links its activation to the process
of DNA repair [26]. Furthermore, it is a key mediator
of the cell fate, since it is capable of initiation of cell-
cycle arrest, senescence, or apoptosis via activation
of p53-inducible genes [27], [28]. In a normal cell,
tumour suppressor p53 is present in a latent form
with low affinity to specific sequences of DNA, but
after genotoxic stress its activity increases
substantially. Regulation of p53 activity after
exposure to IR (not UV-radiation) is to a great extent
ATM-dependent and can be controlled via subcellular
localization, proteolytic degradation mediated by
ubiquitin, or by allosteric modification on the main
DNA binding domain [29]. In order to transfer p53
to cytoplasm, ATM phosphorylates murine-double-
minute protein-2 (mdm2), which is an E3 ubiquitin
ligase [30] essential for targeting and effective p53
degradation in an auto-regulatory bond. 

Protein p53 induces mdm2 transcription, which
directly binds to p53 N-terminus, thus blocks its
further transcriptional activity and maintains p53
degradation ([31]). If the cell is exposed to the DSB-
inducing stress such as IR, this tight auto-regulatory
bond is interrupted and p53 is phosphorylated
in order to make p53 more resistant to the inhibitory
effects of mdm2. Moreover, p53 transcriptional
activity is stimulated. P53-mdm2 model is controlled
by ATM directly via p53 phosphorylation on serine
15 and indirectly via phosphorylation on serine 20
that is conducted by checkpoint kinase-2 (chk-2),
a kinase activated by ATM [32]. These
phosphorylations are rapid, detectable very soon after
irradiation [33] and they make p53 more resistant to
the inhibitory effects of mdm2. Our group proposed
phosphorylation on serine 15 as a potential
biodosimetric marker [34].

Among the plethora of p53 transcriptional
targets, one is outstanding in the terms of regulation
of G1/S checkpoint. It is p21 protein
(WAF1/Cip/Sdi1), which together with p27 and p57
creates a family of proteins sharing the ability to
induce the cell-cycle arrest via inhibition of a wide
range of cyclin-dependent kinases (cdk; [35]). While
regulating G1 checkpoint, ATM controls also

the entry into S-phase, which undermines phenotype
of so-called radio-resistant DNA synthesis. Falck et
al. [36] showed that impairment in ATM/chk-
2/Cdc25A/cdk2 checkpoint pathway results
in uncontrolled cellular inhibition of the DNA
synthesis. The same group also proved that a parallel
mechanisms, by which ATM controls S-checkpoint,
exists - demanding MRN complex [37].

Finally, ATM regulates G2/M checkpoint,
necessary for the cell cycle arrest of the cells, which
were irradiated in the G2-phase and need to repair
eventual DNA damage. Processes in this checkpoint
are checkpoint kinase-1 and checkpoint kinase-2-
dependent. Checkpoint kinases (activated via
ATM/ATR) subsequently posses ability to inhibit
activation of Cdc25C phosphatase required for
activation of further proteins (cyclin B1 and cdk1)
and for progression of the cell-cycle [38]. Thus ATM
together with ATR regulates a wide range of target
molecules by phosphorylation.

DNA-dependent protein kinase (DNA-PK)

DNA-PK is a serine/threonine kinase composed
of a 460 kDa catalytic subunit (DNA-PKcs) and
a DNA-binding het¬erodimer consisting of two
subunits: Ku70 (70 kDa) and Ku86 (86 kDa), which
is sometimes referred to as Ku80 (reviewed in [39]).
The importance of DNA-PK derives from its role in
non-homologous end joining (NHEJ). NHEJ is
considered to be the major DSB repair pathway.
The mechanisms of NHEJ and also HR are well
covered in detail in a recent review of Kasparek and
Humphrey [40].

Heterodimer of Ku70/80 ensures initiation
of NHEJ and it binds to double-stranded DNA
broken ends before DNA-PKcs binds and is activated
[41]. There was another helping protein discovered
in highly radio-sensitive cell lines with defective
DSB reparation, which was named X-ray cross
complementing protein (XRCC4). Matsumoto et al.
[42] reported that it is specifically phosphorylated by
DNA-PK in IR-irradiated cells. XRCC4 has been
shown to bind to an important part of the system -
DNA ligase IV [43].  In mice lacking XRCC4 or
DNA ligase IV gene, massive apoptosis occurs
in embryonic neural cells [44] and mutations in
human fibroblast cell line 180BR (derived from
patient with lymphatic leukaemia) leading to higher
radio-sensitivity, were according to Riballo et al. [45]
linked to DNA ligase IV and the inability to repair
the radiation damage by NHEJ. 

Sinkorova et al.: PIKKs in IR-Induced DNA Damage
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Bogue et al. [46], proposed relation of DNA-
PKcs with DNA repair and genomic stability, since
they observed extreme radio-sensitivity of the cells
lacking DNA-PKcs.  The same group reported that
gamma-irradiated DNA-PKcs-/- mice remain viable,
but immunodeficient and it seems that some aspects
of the DNA-PKcs function are unique and mutations
of DNA-PKcs or Ku in humans have lethal
consequences.

Recently, Van der Burg et al. [47] have identified
the first human DNA-PKcs gene mutation
in immunodeficient patient with only mild
radiosensitive. The mutation did not result in the loss
of enzymatic activity or deficient
autophosphorylation of DNA-PKcs, but affected
activity of Artemis, a kinase required for nucleolytic
processing of DNA ends.

Activated DNA-PKcs phosphorylates a number
of proteins in vitro, including p53, transcription
factors, RNA polymerase, Ku70/Ku80, XRCC4-like
factor (XLF), Artemis, DNA ligase IV [48]. Besides
that, DNA-PKcs autophosphorylation was reported at
multiple sites, including threonine 2609, which results
in a loss of DNA-PK kinase activity [49]. Hammel et
al. [50] have shown that site-specific auto-
phosphorylation induces a large conformational
change that opens DNA-PKcs and promotes its
release from DNA ends. Additionally, it seems that
Ku and DNA-PKcs play a pivotal role in other cellular
processes, like telomere maintenance, transcription of
specific genes or promotion of apoptosis [51].

ATM-Rad3 related kinase (ATR)

The third one of the group of enzymes that is
primarily responsible for signalling of the presence
of DNA damage is ATM and Rad3-related kinase
(ATR). Activation of ATM and DNA-PKcs is
triggered by DSB, while ATR responds to
replication blocks or other conditions that result in
formation of single stranded DNA gaps (ssDNA;
reviewed in [52]).  ATR seems to be the most
versatile PIKK DNA-damage-responsive kinase,
since it is activated not only by IR, but also by UV-
radiation, methyl methansulfonate and cis-platinum,
and many inhibitors of replication such as
hydroxyurea and aphidicolin [53]. Likewise ATM
is recruited to DSB indirectly via MRN complex
([16]), or DNA-PK is recruited by Ku70/80 [41],
Cortez et al. identified an ATR-interacting protein
(ATRIP) that is phosphorylated by ATR [54]. ATRIP
is an essential component of the ATR-dependent

damage checkpoint pathway, since it binds to
Replication protein A (RPA), which coats most
forms of ssDNA in the cell.  Additionally, RPA-
coated ssDNA is sufficient to recruit
the ATR-ATRIP complex, but it is not sufficient for
ATR activation [55]. The critical activator of ATR
is TOPBP1 (DNA topoisomerase II-binding protein
1) [56]. TOPBP1 contains an ATR activation
domain and it was shown to induce a large increase
in the kinase activity of human ATR [57].

ATR is indispensable in replicating cells perhaps
due to the ubiquitous presence of DNA lesions and
replication stress and its primary function is to regulate
progression of cell cycle into G2-phase [58]. ATR is
well-known for phosphorylation of chk-1 but it
activates also other proteins involved in recombination,
such as breast cancer 1 (Brca1), Werner syndrome
protein (WRN), and Bloom's syndrome protein (BLM)
[59]. Prevo et al. published a study on pancreatic cancer
cells where a specific ATR inhibitor VE-821 inhibited
chk-1 phosphorylation and increased radio-sensitivity
via shortening G2/M cell cycle arrest and inhibition
of homologous recombination [60]. While ATR
phosphorylation of chk-1 helps to spread the damage
signal, many of the critical functions of ATR are
associated with chromatin and more specifically with
promoting replication fork stability and recovery
of stalled forks to ensure completion of replication.
Additional ATR substrates include the replication factor
C complex, RPA1 and RPA2, the minichromosome
maintenance protein complex (MCM2-7), MCM10,
and several DNA polymerases [59].

Most ATR substrates can also be
phosphorylated by ATM, and the major functions
of ATR and ATM in cell cycle control are
overlapping but non-redundant. Crosstalk between
these pathways often occurs as a consequence
of inter-conversion of activating DNA lesions. For
instance, in irradiated hypoxic cancer cells Pires et
al. reported that a part of a large DNA damage and
decrease in Hypoxia-inducible factor 1, ATR
inhibition by VE-821 induces phosphorylation
of histone H2AX, a phenomenon well-described
for ATM or DNA-PK [61]. Moreover, although
ATR primarily responds to replication stress, it is
also activated by presence of DSB. It was proved
that ATM is capable of activating ATR through
phosphorylation of TOPBP1 [62].

In the past decade, ATM and ATR pathways
were thought to act in parallel but nowadays due to
accumulating evidence it has become apparent that

Sinkorova et al.: PIKKs in IR-Induced DNA Damage
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their inter-connection is much more complex. What
is then the reason for rapid lethality at the earliest
embryonic stages in cells with defective ATR-chk-
1 pathway, when cells with mutations in ATM (or
other components required for HR, such as BRCA1
and BRCA2), can survive even at the cost
of genomic instability and cancer predisposition
[63]? ATM used to be often described as the initiator
of the checkpoint response and ATR was
characterized as the kinase that maintains it.
Nowadays, we rather think of ATM and ATR as
partners in the DSB response.

mTOR

In mammalian cells, there are three other
PIKKs: transactivation/transformation-domain-
associated protein (TRRAP), mammalian target of
rapamycin (mTOR), and suppressor with
morphological effect on genitalia family member
(SMG-1).

mTOR integrates responses from a wide variety
of signals such as nutrients (amino acids, glucose),
hormones (insulin), growth factors and cellular
stresses to regulate cell growth, metabolism, and
survival, protein synthesis, and transcription [64].
The kinase consists of two complexes mTORC1
and mTORC2; while the former one is inhibited by
a bacterial product rapamycin, the latter one is
rapamycin-insensitive. Although a precise
mechanism of activation of mTOR is not fully
understood, PI3K and protein kinase B (Akt) seem
to be the key modulatory factors [65].
The PI3K/Akt signal transduction pathway A is a
principal pathway that signals through mTOR and
it is critically involved in the mentioned mediation
of cell survival and proliferation, mainly by anti-
apoptotic Akt-dependent phosphorylation of Bad
[66].

The activation of mTOR enhances protein
translation via phosphorylation of eukaryotic
initiation factor 4E-binding protein 1 (4E-BP1) and
S6 kinase (S6K1), which are the main targets
of mTORC1 [67]. S6 phosphorylation has been used
as a biomarker for mTOR activation [68]. mTORC2
has been shown to function as an important regulator
of the cytoskeleton [69]. Since mTOR is inhibited by
rapamycin, a new line of anticancer drugs, such as
CCI-779 and RAD001, emerged. These substances
exhibit significant anticancer activity in various
tumour cell lines and lead to inactivation of
ribosomal S6K1 and inhibition of 4E-BP1 resulting

into accumulation of cells in the G1 and potential
apoptosis [70]. In the terms of sensitivity towards IR,
rapamycin (known as sirolimus) and temsirolimus
were recently shown as selective effectors of
the radiation therapy response, although dependent
on relative cell cycle kinetics [71]. Interestingly, Le
Guezennec et al. reported that Wip1 phosphatase
(a known negative regulator of ATM-dependent
signalling) regulates autophagy, obesity, and
atherosclerosis via inhibition of mTOR, thus
indicating existence of a non-canonical ATM-mTOR
signalling pathway [72]. Consistently, mTOR
inhibitors radiosensitize cells via disruption of the
major DNA repair pathways. As it was proved by
Chen et al., treating irradiated MCF7 breast cancer
cells with rapamycin results in impaired recruitment
of BRCA1 and Rad51 to DNA repair foci (both
essential for HR) and they reported a significant
suppression of HR and NHEJ [73].

Recently, a surprising link between mTOR and
DSB repair was pointed out by Robert et al. [74].
Their study provides the evidence of acetylation-
regulated degradation of Sae2 (a protein that
negatively regulates DNA damage checkpoint
signalling) by autophagy. Robert et al. induced
hyperacetylation of proteins by inhibition of histone
deacetylase activity. Autophagy is executed by
proteins, which respond to signals from the mTOR,
thus its inhibition with rapamycin triggers autophagy
in irradiated cells resulting in decreased level of Sae2
and subsequent failure to repair DSB [75]

SMG-1 and TRRAP

TRRAP retains most of the catalytic domain but
lacks the residues that are essential for binding ATP
and it is the only PIKK member, which does not
possess the kinase activity towards Ser or Thr
residues. Nevertheless, it has been found to have an
essential role in embryonic development, cell-cycle
progression and mitotic control [76].

SMG-1 is the sixth and the newest member of the
mammalian PIKK family. It plays a critical role in
the mRNA quality control system termed nonsense-
mediated mRNA decay (NMD) and protects the cells
from the accumulation of aberrant mRNAs.

The complete and detailed characterization of
mTOR, SMG-1, and TRAPP is far beyond the extent
of this paper. For further reading regarding these
kinases we recommend several other reviews (e.g.
[65], [77], [78], [79] and [80]).
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CONCLUSION

Taken together, the whole kinase family exhibits
functional heterogeneity. Despite  that some of its
members co-operate together while they orchestrate
DNA damage response. Our knowledge about
the DNA damage signalling pathway has greatly
increased over the past several years. However, new
questions about the sensors and transducers, which
mediate the DNA damage response, are still arising,
especially when proteomic analysis have identified
hundreds of potential substrates of ATM, ATR, and
DNA-PK. A need to understand the mechanisms
of their action is driven by the fact that they are
involved in the processes which underlie radiation
resistance. Nowadays, we are expecting with interest
the results of clinical studies focused on inhibition of
DNA repair in cancer cells either by small inhibitor
molecules or small interfering RNA (siRNA),
because development of efficient therapeutic tools
and deeper comprehension of DNA damage response
will establish new platforms for treatment strategies
in oncology.
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