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Summary

Organophosphorus compounds (organophosphates and organophosphonates) exert their toxicity
by phosphylating (i.e. either phosphorylating or phosphonylating) the serine hydroxyl group of the enzyme
acetylcholinesterase (AChE) in its active center, thereby inhibiting this enzyme, which inactivates
the neurotransmitter acetylcholine (ACh). This results in an accumulation of ACh and an “endogenous
ACh poisoning”.

Oximes, which can reactivate the inhibited enzyme by dephosphylation, are used in the therapy
of organophosphorus compound poisoning. During the reactivation process, oximes become themselves
phosphylated. Many of these phosphylated oximes are extremely potent AChE inhibitors, which may reduce
their therapeutic efficacy.

K-27 is a very promising experimental oxime. In the present study, logP values of phosphylated K-27
are estimated after “in-silico exposure” to a number of organophosphorus esters [ethyl-paraoxon, methyl-
paraoxon, diisopropyl-fluoro-phosphate, VX, soman, tabun, sarin, cyclosarin]. These logP values
are compared with those of the native oxime and possible therapeutic relevance is discussed.

While our previously published data regarding obidoxime and pralidoxime show that phosphylation
increases their lipophilicity, facilitating penetration into the brain where they can inhibit or re-inhibit
enzymes, this conclusion does not hold with respect to K-27; phosphylation of K-27 does not generally
increase lipophilicity. Possible consequences with regard to blood-brain-barrier passage, toxicity and
therapeutic efficacy are discussed.
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of the enzyme acetylcholinesterase (AChE), which
inactivates the neurotransmitter acetylcholine (ACh)
at cholinergic synapses. Esterase inhibition results
from phosphylation (i.e. either phosphorylation
or phosphonylation) of the serine hydroxyl group
in the active center of the enzyme and translates into
an  “endogenous  acetylcholine  poisoning”.
The therapy of poisoning with organophosphorus
compounds, which can be memorized by the acronym
A FLOP = Atropine, FLuids, Oxygen, Pralidoxime
[4], is generally disappointing.

The history of the synthesis of organophosphorus
compounds and of their applications has recently
been investigated [5-7]. One therapeutic option
is reactivation of phosphylated AChE by pyridinium
oximes [8]. Working at Columbia in the laboratory
of David Nachmansohn, Wilson and Ginsburg
synthesized a number of pyridine oximes, one
of which was pralidoxime, the first aldoxime
cholinesterase reactivator of clinical relevance.
In Great Britain, Davies and Green independently
performed similar research [9].

Pyridinium oximes reactivate phosphylated AChE
by interacting with the anionic site of the enzyme.
An optimal orientation of the reactivator
at the catalytic site of the enzyme is facilitated
by the pyridinium moiety, which thus increases
efficacy [10, 11]. It is generally accepted that nerve
gas exposure can be treated with oximes; however,
the therapeutic value of oximes in human
organophosphate pesticide poisoning is controversial
[1, 12].

One possible reason for the disappointing
efficacy may be the generation of phosphylated
oximes during AChE reactivation [12-14]. When
interpreting kinetic studies of the reactivation and
aging of organophosphate-AChE conjugates,
physico-chemical properties of phosphylated oximes
therefore need to be considered [15]. The octanol-
water partition coefficient [logP], a concept
introduced over a century ago by Berthelot (according
to ref. [16]) which is based on the partition
of substances between oil and water, is often
correlated with their biological activities [3, 17-19].
We have recently been able to demonstrate that
phosphylation of two oximes in clinical use,
pralidoxime and obidoxime, results in a significant
reduction in the absolute value of logP,
corresponding to an increase in lipophilicity [14].
K-27 is an experimental oxime with very promising
in vivo and in vitro characteristics [20-27].
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PURPOSE OF THE STUDY

To estimate logP values of phosphylated K-27
after “in-silico exposure” to a number of organo-
phosphorus esters [ethyl-paraoxon, methyl-paraoxon,
diisopropyl-fluoro-phosphate (DFP), VX, soman,
tabun, sarin, cyclosarin], to compare them with
the logP of the native oxime and with those
of phosphylated pralidoxime and obidoxime and
to discuss possible therapeutic relevance.

MATERIAL & METHOD

Chemical structures of all compounds were drawn
using ChemDraw Ultra 12.0 (CambridgeSoft
Software, PerkinElmer Inc. Waltham, Massachusetts).
LogP values of organophosphorus esters, K-27 and
phosphylated K-27 were estimated using the PrologP
module of the Pallas 3413 software (CompuDrug
Inc., Sedona, AZ, USA). Details of the algorithm
used for calculations are given by [28]. The program
takes into account all lipophilic and hydrophilic
fragments of a specific compound and makes minor
corrections based on octanol-water partition data,
as available from the literature. The authors
emphasize that their neural network-based method
(pseudo-linear algorithms) combines the precision
of non-linear approaches with the transparency
of the early linear methods. The logP value
of a substance is most relevant for neutral substances
and is also useful as a general reference point to help
compare overall hydrophobicity trends of
compounds.

RESULTS

Table 1 lists the structures and logP values
of organophosphorus pesticides (ethyl-paraoxon,
methyl-paraoxon), DFP and nerve gases (sarin,
cyclosarin, soman, tabun, VX). LogP values are lowest
for tabun (-0.02) and highest for ethyl-paraoxon (2.18),
implying that all compounds except tabun are
lipophilic, reflected by their positive logP values.

The chemical formulas and logP values of K-27
phosphylated by the same organophosphorus
compounds (ethyl-paraoxon, methyl-paraoxon, DFP,
sarin, cyclosarin, soman, tabun, VX) are shown in
table 2. Native K-27 has a logP value of -3.03 +-0.39,
reflecting its hydrophilicity. Phosphylation of K-27
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barely influences hydrophilicity: logP values range by cyclosarin). With the exception of K-27
from -3.48 + -0.44 (slight increase in hydrophilicity phosphylated by cyclosarin, phosphylated K-27
after phosphylation by soman) to -2.38 + -0.46 derivatives are thus not less hydrophilic than
(decrease in hydrophilicity after phosphylation unphosphylated K-27.

Table 1. LogP values of organophosphorus esters [phosphylating agents]. All compounds with the exception of tabun are
lipophilic (positive logP values).
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Table 2. LogP values of K-27 and of phosphylated K-27. Phosphylation by cyclosarin is the only reaction somewhat reducing
hydrophilicity.
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DISCUSSION

Although the action mechanism of oximes is
relatively well characterized in theory, their practical
value remains uncertain and oximes have
disappointed clinically [1, 29]. Due to the presence
of a positively charged nitrogen atom, oxime
molecules are polar, have a negative logP and are
hydrophilic. Since only small lipophilic compounds
easily penetrate the blood brain barrier, oximes barely
enter the brain [30]. The brain concentration
of the monopyridinium aldoxime pralidoxime is only
10% of its blood concentration, and penetration
of bis-pyridinium aldoximes, such as obidoxime and
K-27 is even lower [31, 32].

The relationship between oxime efficacy and
their entry into the brain is still a contentious issue.
Is the restricted brain penetration of oximes
the reason for their limited efficacy? Could
superior efficacy be achieved by an increase
in brain penetration? Apparently, the initial answer
to these questions has been “yes”, as demonstrated
by the attempt to develop a less hydrophilic pro-
drug of pralidoxime [33]. This dihydropyridine
derivative of pralidoxime, pro-2-PAM, was
supposed to enter the brain more easily, and 2-PAM
brain levels were indeed considerably higher when
using this brain penetrating pro-drug. However,
overall results were disappointing [34], leading
to the following conclusion in a recent review:
“Increasing the BBB penetration by oximes does
not actually lead to significant benefits of survival
rate, but certainly amplifies the neurotoxic risks”
[35].

After correlating the in vivo toxicity of various
oximes with different in vitro parameters [3, 19], our
own experimental studies indicate that a very
negative logP (strong hydrophilicity) is a good
predictor for low oxime toxicity (as assessed by
survival). In addition, oximes with very negative
logP (strong hydrophilicity) were significantly more
efficacious in reducing DFP-induced mortality than
more lipophilic ones. This suggests that limited brain
penetration is actually desirable. One possible
explanation for this unexpected conclusion is
the formation of phosphylated oximes, which are
generated by the reaction of oximes with
organophosphorus-inhibited enzymes and which are
highly toxic [13]. Phosphylation is the umbrella term
used to describe phosphorylation (occurring during
the reactivation of an enzyme inhibited by
an organophosphate insecticide, such as paraoxon) or
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phosphonilation (occurring during the reactivation
of an enzyme inhibited by an organophosphonate
“nerve gas”). Organophosphates do not contain
a direct phosphorus-carbon link, while organo-
phosphonates do contain one. Phosphylated oximes
are themselves potent inhibitors of AChE, sometimes
much more potent than the initial offending
organophosphate or organophosphonate, which
generally translates into very high toxicity.

LogP: Pyridinium oximes are hydrophilic
compounds (large negative value of logP) with
very limited CNS penetration [30-32]. We have
previously been able to demonstrate that
phosphylation of two established oximes,
obidoxime and pralidoxime, results in a significant
decrease in the absolute logP value, corresponding
to a reduction in hydrophilicity, i.e. an increase
in lipophilicity [14]. This decrease in hydrophilicity
favors penetration into the brain, where
phosphylated oximes might phosphylate AChE,
thereby defeating their therapeutic purpose and
resulting in limited efficacy. In the case of K-27,
the present study demonstrates that phosphylation
by the majority of toxic organophosphates
and —phosphonates increases hydrophilicity.
Phosphylated K-27 therefore barely enter the brain.
Our own animal work indicates that K-27 is much
more efficacious than obidoxime or pralidoxime,
when given in the same equitoxic dosage [23, 25,
26]. This superior efficacy may be related
to the limited passage of phosphylated K-27 into
the brain.

CONCLUSION

We conclude that an “ideal” oxime must not only
be non-toxic itself, but should also yield non- toxic
products after phosphylation. Moreover, these
phosphylation products should ideally be very
hydrophilic, thus barely entering the brain. K-27
might come closer to this ideal than the established
oximes.
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