MMSL 2021, 90(1):43-50 | DOI: 10.31482/mmsl.2021.004
PERMANENT STRUCTURED COOPERATION OF THE EUROPEAN UNION IN THE AREA OF CBRNReview article
- 1 Katedra molekulární patologie a biologie, Fakulta vojenského zdravotnictví, Univerzita obrany v Brně, Třebešská 1575, 500 01 Hradec Králové, Česká republika
- 2 Centrum bezpečnostních a vojensko-strategických studií, Univerzita obrany v Brně, Kounicova 65, 662 10 Brno, Česká republika
Iniciativa Permanentní strukturovaná spolupráce (PESCO) je nástroj Evropské unie (EU) zakotvený v Lisabonské smlouvě z roku 2007, který umožňuje vznik mezinárodních projektových týmů zaměřených na konkrétní téma a vytvořených s cílem posílit schopnosti armád členských zemí EU a podpořit tak Společnou bezpečnostní a obrannou politiku. Oblast bojových chemických látek, biologických agens, jaderných zbraní a zdrojů ionizujícího záření (CBRN) je jednou z možných oblastí řešených projekty PESCO. Tato práce je zaměřena na posouzení iniciativy PESCO ve vztahu k budoucím projektům zaměřeným na oblast CBRN a následné uplatnitelnosti výsledků ve vojenské praxi.
Keywords: Biologická zbraň; detekce; dekontaminace; Evropská unie; chemická zbraň; jaderná zbraň; společná obrana; NBC; zbraně hromadného ničení; zdravotnická ochrana
The initiative of Permanent Structured Cooperation (PESCO) is a tool of European Union (EU) embedded in the Treaty of Lisbon of the year 2007 that allows founding an international project team focused on a specific task and aimed to improve armies of EU members to support the Common Security and Defence Policy. The area of chemical, biological, radiological and nuclear materials (CBRN) is one of the promising and possible focuses where a PESCO project can be placed. This work is focused on the evaluation of the initiative PESCO in the relation to the area of CBRN and application of results from the projects to the current military praxis.
Keywords: Biological weapon; detection; decontamination; European Union; chemical weapon; nuclear weapon; common security; NBC; weapons of mass destruction; medical protection
Received: January 24, 2021; Revised: February 16, 2021; Accepted: February 17, 2021; Prepublished online: February 22, 2021; Published: March 5, 2021 Show citation
References
- Zacchia NA, Schmitt K. Medical Spending for the 2001 Anthrax Letter Attacks. Disaster Medicine and Public Health Preparedness. 2019;13(3):539-46.
Go to original source...
Go to PubMed...
- Pohanka M. Bacillus anthracis as a biological warfare agent: infection, diagnosis and countermeasures. Bratislava Medical Journal. 2020;121(3):175-81.
Go to original source...
Go to PubMed...
- Pohanka M. Botulinum Toxin as a Biological Warfare Agent: Poisoning, Diagnosis and Countermeasures. Mini-Rev Med Chem. 2020;20(10):865-74.
Go to original source...
Go to PubMed...
- Janik E, Ceremuga M, Saluk-Bijak J, Bijak M. Biological Toxins as the Potential Tools for Bioterrorism. International journal of molecular sciences. 2019;20(5):1181.
Go to original source...
Go to PubMed...
- Okumura T, Takasu N, Ishimatsu S, Miyanoki S, Mitsuhashi A, Kumada K, et al. Report on 640 victims of the Tokyo subway sarin attack. Annals of Emergency Medicine. 1996;28(2):129-35.
Go to original source...
Go to PubMed...
- Tokuda Y, Kikuchi M, Takahashi O, Stein GH. Prehospital management of sarin nerve gas terrorism in urban settings: 10 years of progress after the Tokyo subway sarin attack. Resuscitation. 2006;68(2):193-202.
Go to original source...
Go to PubMed...
- Ohbu S, Yamashina A, Takasu N, Yamaguchi T, Murai T, Nakano K, et al. Sarin poisoning on Tokyo subway. SouthMedJ. 1997;90(6):587-93.
Go to original source...
Go to PubMed...
- Pohanka M. Current Trends in the Biosensors for Biological Warfare Agents Assay. Materials. 2019;12(14):E2303.
Go to original source...
Go to PubMed...
- Kaur N, Prabhakar N. Current scenario in organophosphates detection using electrochemical biosensors. Trac-Trends in Analytical Chemistry. 2017;92:62-85.
Go to original source...
- Picot S, Cucherat M, Bienvenu AL. Systematic review and meta-analysis of diagnostic accuracy of loop-mediated isothermal amplification (LAMP) methods compared with microscopy, polymerase chain reaction and rapid diagnostic tests for malaria diagnosis. International Journal of Infectious Diseases. 2020;98:408-19.
Go to original source...
Go to PubMed...
- Wania F, Shunthirasingham C. Passive air sampling for semi-volatile organic chemicals. Environ Sci-Process Impacts. 2020;22(10):1925-2002.
Go to original source...
Go to PubMed...
- Li JY, Yu ZW, Du ZH, Ji Y, Liu C. Standoff Chemical Detection Using Laser Absorption Spectroscopy: A Review. Remote Sens. 2020;12(17):2771.
Go to original source...
- Jia JX, Wang YM, Chen JS, Guo R, Shu R, Wang JY. Status and application of advanced airborne hyperspectral imaging technology: A review. Infrared Phys Technol. 2020;104:103115.
Go to original source...
- Sawant A, Kwak D, Lee I, Chung M, Choi E. Stand-off radiation detection techniques. Review of Scientific Instruments. 2020;91(7):071501.
Go to original source...
Go to PubMed...
- Abd El-Ghany NM, Abd El-Aziz SE, Marei SS. A review: application of remote sensing as a promising strategy for insect pests and diseases management. Environ Sci Pollut Res. 2020;27(27):33503-15.
Go to original source...
Go to PubMed...
- Yan L, Li YF, Chandrasekar V, Motimer H, Peltoniemi J, Lin Y. General review of optical polarization remote sensing. Int J Remote Sens. 2020;41(13):4853-64.
Go to original source...
- Lan HZ, Hartonen K, Riekkola ML. Miniaturised air sampling techniques for analysis of volatile organic compounds in air. Trac-Trends in Analytical Chemistry. 2020;126:115873.
Go to original source...
- Lally HT, O'Connor I, Jensen OP, Graham CT. Can drones be used to conduct water sampling in aquatic environments. A review. Science of the Total Environment. 2019;670:569-75.
Go to original source...
Go to PubMed...
- Kas KA, Johnson GK. Using unmanned aerial vehicles and robotics in hazardous locations safely. Process Saf Prog. 2020;39(1):e12066.
Go to original source...
- Chang CC, Chang CY, Wang JL, Lin MR, Ou-Yang CF, Pan HH, et al. A study of atmospheric mixing of trace gases by aerial sampling with a multi-rotor drone. Atmos Environ. 2018;184:254-61.
Go to original source...
- Lee J, Park J, Kim J. Vertical Measurement of Equivalent Black Carbon Concentration at Low Altitude. Appl Sci-Basel. 2020;10(15):5142.
Go to original source...
- Oheix E, Gravel E, Doris E. Catalytic Processes for the Neutralization of Sulfur Mustard. Chem-Eur J. 2020;DOI: 10.1002/chem.202003665.
Go to original source...
Go to PubMed...
- Saleem H, Zaidi SJ. Developments in the Application of Nanomaterials for Water Treatment and Their Impact on the Environment. Nanomaterials. 2020;10(9):1764.
Go to original source...
Go to PubMed...
- Bhat IU, Anwar SJ, Anwar MNK, Yusoff HM. Decontamination of contaminated water by palladium catalyst: a short review. Adv Nat Sci-Nanosci Nanotechnol. 2020;11(3):035007.
Go to original source...
- Kumar V, Katyal D, Nayak S. Removal of heavy metals and radionuclides from water using nanomaterials: current scenario and future prospects. Environ Sci Pollut Res. 2020;27(33):41199-224.
Go to original source...
Go to PubMed...
- Pohanka M. Inhibitors of Cholinesterases in the Pharmacology, the Current Trends. Mini Reviews in Medicinal Chemistry. 2019;18(10):doi: 10.2174/1389557519666191018170908.
Go to original source...
Go to PubMed...
- Sezigen S, Kenar L. Recent sulfur mustard attacks in Middle East and experience of health professionals. Toxicol Lett. 2020;320:52-7.
Go to original source...
Go to PubMed...
- Gelman D, Eisenkraft A, Chanishvili N, Nachman D, Glazer SC, Hazan R. The history and promising future of phage therapy in the military service. J Trauma Acute Care Surg. 2018;85(S2):S18-S26.
Go to original source...
Go to PubMed...
- Ordeanu V, Necsulescu M, Ionescu LE, Popescu DM, Bicheru SN, Dumitrescu GV, et al. Anti-infective Therapy Principles in Diseases Caused by Bacterial Biological Agents. J Pharm Res Int. 2018;23(5):43754.
Go to original source...
- Solsona MAB. Four years of the EU Global Strategy: towards strategic autonomy but far from a European Army. Relac Int. 2020;29(58):261-76.
- Calcara A. The hybrid role of the High Representative in the security and defence field: more in 10 months than in the 10 years? Eur Secur. 2020;29(3):376-95.
Go to original source...
- Naumescu V. The Post-Brexit EU as a Global Actor: Reconsidering Security. Rom J Eur Aff. 2020;20(1):21-36.
- Martill B, Sus M. Post-Brexit EU/UK security cooperation: NATO, CSDP plus , or "French connection'? Br J Polit Int Relat. 2018;20(4):846-63.
Go to original source...
- Guseinov K. French Initiatives in the Field of EU Security and Defense. Contemp Eur. 2020(2):205-11.
Go to original source...
- Kokeev AM. New accents in defence strategy and security policy of Germany Mirovaya Ekon Mezhdunarodyne Otnosheniya. 2018;62(11):26-34.
Go to original source...
- Nocon J, Dorosh L, Ivasechko O. PESCO as the modern defense initiative of the European Union: positions of western European countries vs positon of Eastern European countries Eur J Transform Stud. 2019;7(2):128-41.
- Vorotnikov VV, Gribin NP, Petlyaeva DA, Pimenova EV, Yakutova UV. NATO versus PESCO: economic aspects. Mirovaya Ekon Mezhdunarodyne Otnosheniya. 2020;64(6):40-50.
Go to original source...
- Naumescu V. Administrative and political perspective of the EU´s reform: focus on Permanent Structured Cooperation Transylv Rev Adm Sci. 2018;SI:60-74.
Go to original source...